Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 396
Filtrar
1.
Artigo em Inglês | MEDLINE | ID: mdl-38593180

RESUMO

Here, we combined Cd and In codoping with a simple hydrothermal synthesis method to prepare SnSe powders composed of nanorod-like flowers. After spark plasma sintering, its internal grains inherited well the morphological features of the precursor, and the multiscale microstructure included nanorod-shaped grains, high-density dislocations, and stacking faults, as well as abundant nanoprecipitates, resulting in an ultralow thermal conductivity of 0.15 W m-1 K-1 for the synthesized material. At the same time, Cd and In synergistically regulated the electrical conductivity and Seebeck coefficient of SnSe, leading to an enhanced power factor. Among them, Sn0.94Cd0.03In0.03Se achieved a peak ZT of 1.50 parallel to the pressing direction, representing an 87.5% improvement compared with pure SnSe. Notably, the material possesses isotropic ZT values parallel and perpendicular to the pressing direction, overcoming the characteristic anisotropy in thermal performance observed in previous polycrystalline SnSe-based materials. Our results provide a new strategy for optimizing the performance of thermoelectric materials through structural engineering.

2.
Food Chem ; 448: 138575, 2024 Aug 01.
Artigo em Inglês | MEDLINE | ID: mdl-38604110

RESUMO

Quinoa sprouts are a green vegetable rich in bioactive chemicals, which have multiple health benefits. However, there is limited information on the overall metabolic profiles of quinoa sprouts and the metabolite changes caused by saline-alkali stress. Here, a UHPLC-MS/MS-based widely targeted metabolomics technique was performed to comprehensively evaluate the metabolic profiles of quinoa sprouts and characterize its metabolic response to saline-alkali stress. A total of 930 metabolites were identified of which 232 showed significant response to saline-alkali stress. The contents of lipids and amino acids were significantly increased, while the contents of flavonoids and phenolic acids were significantly reduced under saline-alkali stress. Moreover, the antioxidant activities of quinoa sprouts were significantly affected by saline-alkali stress. The enrichment analysis of the differentially accumulated metabolites revealed that flavonoid, amino acid and carbohydrate biosynthesis/metabolism pathways responded to saline-alkali stress. This study provided an important theoretical basis for evaluating the nutritional value of quinoa sprouts and the changes in metabolites in response to saline-alkali stress.


Assuntos
Álcalis , Chenopodium quinoa , Flavonoides , Valor Nutritivo , Chenopodium quinoa/química , Chenopodium quinoa/metabolismo , Chenopodium quinoa/crescimento & desenvolvimento , Álcalis/química , Álcalis/metabolismo , Flavonoides/metabolismo , Flavonoides/análise , Flavonoides/química , Cromatografia Líquida de Alta Pressão , Antioxidantes/metabolismo , Antioxidantes/química , Metabolômica , Espectrometria de Massas em Tandem , Aminoácidos/metabolismo , Aminoácidos/análise , Estresse Fisiológico
3.
Cancer Cell ; 2024 Apr 16.
Artigo em Inglês | MEDLINE | ID: mdl-38640932

RESUMO

Monocyte-derived tumor-associated macrophages (Mo-TAMs) intensively infiltrate diffuse gliomas with remarkable heterogeneity. Using single-cell transcriptomics, we chart a spatially resolved transcriptional landscape of Mo-TAMs across 51 patients with isocitrate dehydrogenase (IDH)-wild-type glioblastomas or IDH-mutant gliomas. We characterize a Mo-TAM subset that is localized to the peri-necrotic niche and skewed by hypoxic niche cues to acquire a hypoxia response signature. Hypoxia-TAM destabilizes endothelial adherens junctions by activating adrenomedullin paracrine signaling, thereby stimulating a hyperpermeable neovasculature that hampers drug delivery in glioblastoma xenografts. Accordingly, genetic ablation or pharmacological blockade of adrenomedullin produced by Hypoxia-TAM restores vascular integrity, improves intratumoral concentration of the anti-tumor agent dabrafenib, and achieves combinatorial therapeutic benefits. Increased proportion of Hypoxia-TAM or adrenomedullin expression is predictive of tumor vessel hyperpermeability and a worse prognosis of glioblastoma. Our findings highlight Mo-TAM diversity and spatial niche-steered Mo-TAM reprogramming in diffuse gliomas and indicate potential therapeutics targeting Hypoxia-TAM to normalize tumor vasculature.

4.
Physiol Plant ; 176(2): e14287, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38606719

RESUMO

Salt stress substantially leads to flowering delay. The regulation of salt-induced late flowering has been studied at the transcriptional and protein levels; however, the involvement of secondary metabolites has rarely been investigated. Here, we report that FMOGS-OXs (EC 1.14.13.237), the enzymes that catalyze the biosynthesis of glucosinolates (GSLs), promote flowering transition in Arabidopsis thaliana. It has been reported that WRKY75 is a positive regulator, and MAF4 is a negative regulator of flowering transition. The products of FMOGS-OXs, methylsulfinylalkyl GSLs (MS GSLs), facilitate flowering by inducing WRKY75 and repressing the MAS-MAF4 module. We further show that the degradation of MS GSLs is involved in salt-induced late flowering and salt tolerance. Salt stress induces the expression of myrosinase genes, resulting in the degradation of MS GSLs, thereby relieving the promotion of WRKY75 and inhibition of MAF4, leading to delayed flowering. In addition, the degradation products derived from MS GSLs enhance salt tolerance. Previous studies have revealed that FMOGS-OXs exhibit alternative catalytic activity to form trimethylamine N-oxide (TMAO) under salt stress, which activates multiple stress-related genes to promote salt tolerance. Therefore, FMOGS-OXs integrate flowering transition and salt tolerance in various ways. Our study shed light on the functional diversity of GSLs and established a connection between flowering transition, salt resistance, and GSL metabolism.


Assuntos
Proteínas de Arabidopsis , Arabidopsis , Oxigenases , Arabidopsis/metabolismo , Tolerância ao Sal , Proteínas de Arabidopsis/genética , Proteínas de Arabidopsis/metabolismo , Regulação da Expressão Gênica de Plantas , Glucosinolatos
5.
Front Bioeng Biotechnol ; 12: 1345319, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38633668

RESUMO

Introduction: The treatment of skip-level cervical degenerative disease (CDD) with no degenerative changes observed in the intervening segment (IS) is complicated. This research aims to provide a reference basis for selecting treatment approaches for noncontiguous CDD. Methods: To establish accurate finite element models (FEMs), this study included computed tomography (CT) data from 21 patients with CDD (10 males and 11 females) for modeling. The study primarily discusses four cross-segment surgical approaches: upper (C3/4) anterior cervical discectomy and fusion (ACDF) and lower (C5/6) cervical disc arthroplasty (CDA), FA model; upper CDA (C3/4) and lower ACDF (C5/6), AF model; upper ACDF (C3/4) and lower ACDF (C5/6), FF model; upper CDA (C3/4) and lower CDA (C5/6), AA model. An initial axial load of 73.6 N was applied at the motion center using the follower load technique. A moment of 1.0 Nm was applied at the center of the C2 vertebra to simulate the overall motion of the model. The statistical analysis was conducted using STATA version 14.0. Statistical significance was defined as a p value less than 0.05. Results: The AA group had significantly greater ROM in flexion and axial rotation in other segments compared to the FA group (p < 0.05). The FA group consistently exhibited higher average intervertebral disc pressure in C2/3 during all motions compared to the AF group (p < 0.001); however, the FA group displayed lower average intervertebral disc pressure in C6/7 during all motions (p < 0.05). The AA group had lower facet joint contact stresses during extension in all segments compared to the AF group (p < 0.05). The FA group exhibited significantly higher facet joint contact stresses during extension in C2/3 (p < 0.001) and C6/7 (p < 0.001) compared to the AF group. Discussion: The use of skip-level CDA is recommended for the treatment of non-contiguous CDD. The FA construct shows superior biomechanical performance compared to the AF construct.

6.
Chemosphere ; 357: 141858, 2024 Apr 17.
Artigo em Inglês | MEDLINE | ID: mdl-38636910

RESUMO

The non-free radical oxidation pathway (PMS-NOPs) of peroxymonosulfate (PMS) holds significant promise for practical wastewater treatment applications, owing to its low oxidation potential, high PMS utilization rate, and robust anti-interference capability in the degradation of pollutants. A novel activator copper nitrogen co-doped porous biochar (Cu-N-BC) with rich defect edges and functional groups was obtained by adding Cu and N to the biochar matrix generated by sodium alginate through pyrolysis in this study. Under the condition of 1 mM PMS, 30 mg/L activator was used to activate PMS and achieve efficient degradation of 10 mg/L paracetamol (PCT) within 15 min, with a high reaction rate constants (kobs) of 0.391 min-1. The activation mechanism of the Cu-N-BC/PMS/PCT system was a non-radical activation pathway with the dominance of singlet oxygen (1O2) and the presence of catalyst-mediated electron transfer. The graphite nitrogen, pyridine nitrogen, and Cu-N coordination introduced by Cu/N co-doping, as well as the carbon skeleton and CO functional group of biochar, were considered active sites that promote the 1O2 generation. The Cu-N-BC/PMS system exhibits strong stability, eco-friendliness, effective mineralization, and interference resistance across diverse pH levels (3-11) and interfering ions, including Cl-, H2PO4-, NO3-, SO42-, and humic acid. Remarkably, it efficiently degrades PCT in tap and lake water, achieving a notable 63.73% TOC mineralization rate, with leached copper ions below 0.02 mg/L. This research introduces a novel method for obtaining metal nitrogen carbon activators and enhances understanding of PMS non-radical activation pathways and active sites.

7.
Heliyon ; 10(8): e29449, 2024 Apr 30.
Artigo em Inglês | MEDLINE | ID: mdl-38660262

RESUMO

Background: Head and neck squamous cell carcinoma (HNSCC) is a significant global health challenge. The identification of reliable prognostic biomarkers and construction of an accurate prognostic model are crucial. Methods: In this study, mRNA expression data and clinical data of HNSCC patients from The Cancer Genome Atlas were used. Overlapping candidate genes (OCGs) were identified by intersecting differentially expressed genes and prognosis-related genes. Best prognostic genes were selected using the least absolute shrinkage and selection operator Cox regression based on OCGs, and a risk score was developed using the Cox coefficient of each gene. The prognostic power of the risk score was assessed using Kaplan-Meier survival analysis and time-dependent receiver operating characteristic analysis. Univariate and multivariate Cox regression were performed to identify independent prognostic parameters, which were used to construct a nomogram. The predictive accuracy of the nomogram was evaluated using calibration plots. Functional enrichment analysis of risk score related genes was performed to explore the potential biological functions and pathways. External validation was conducted using data from the Gene Expression Omnibus and ArrayExpress databases. Results: FADS3, TNFRSF12A, TJP3, and FUT6 were screened to be significantly related to prognosis in HNSCC patients. The risk score effectively stratified patients into high-risk group with poor overall survival (OS) and low-risk group with better OS. Risk score, age, clinical M stage and clinical N stage were regarded as independent prognostic parameters by Cox regression analysis and used to construct a nomogram. The nomogram performed well in 1-, 2-, 3-, 5- and 10-year survival predictions. Functional enrichment analysis suggested that tight junction was closely related to the cancer. In addition, the prognostic power of the risk score was validated by external datasets. Conclusions: This study constructed a gene-based model integrating clinical prognostic parameters to accurately predict prognosis in HNSCC patients.

8.
Int J Mol Sci ; 25(6)2024 Mar 07.
Artigo em Inglês | MEDLINE | ID: mdl-38542058

RESUMO

Nanoparticles (NPs) represent a potential optoelectronic source capable of significantly boosting hydrogen production; however, their inevitable cytotoxicity may lead to oxidative damage of bacterial cell membranes. In this study, we employed non-photosynthetic Escherichia coli K-12 as a model organism and utilized self-assembled cadmium sulfide (CdS) nanoparticles to construct a low-toxicity and hydrogen-production-enhancing self-photosensitive hybrid system. To mitigate the cytotoxicity of CdS NPs and synthesize biocompatible CdS NPs on the cell surface, we employed engineered E. coli (efeB/OE) for bioremediation, achieving this goal through the overexpression of the peroxidase enzyme (EfeB). A comparative analysis with E. coli-CdS revealed a significant downregulation of genes encoding oxidative stress proteins in efeB/OE-CdS post-irradiation. Atomic force microscopy (AFM) confirmed the stability of bacterial cell membranes. Due to the enhanced stability of the cell membrane, the hydrogen yield of the efeB/OE-CdS system increased by 1.3 times compared to the control, accompanied by a 49.1% reduction in malondialdehyde (MDA) content. This study proposes an effective strategy to alleviate the toxicity of mixed biological nanoparticle systems and efficiently harness optoelectronic electrons, thereby achieving higher hydrogen production in bioremediation.


Assuntos
Compostos de Cádmio , Dermatite Fototóxica , Escherichia coli K12 , Nanopartículas , Humanos , Escherichia coli/genética , Nanopartículas/toxicidade , Sulfetos , Hidrogênio
9.
World J Surg Oncol ; 22(1): 79, 2024 Mar 14.
Artigo em Inglês | MEDLINE | ID: mdl-38486308

RESUMO

BACKGROUND: For women diagnosed with HR-HPV DNA positivity in community hospitals, the necessity of investigating the potential presence of multiple HR-HPV infections upon referral to tertiary medical institutions remains unclear. METHODS: In our cohort, women tested positive for HR-HPV DNA during examinations in community hospitals, were subsequently referred to tertiary medical facilities, reevaluated HR-HPV genotype and categorized based on cytological and histopathological results. The risk of cytologic/histopathology abnormalities and ≧ high grade squamous intraepithelial lesion(HSIL) or Cervical Intraepithelial Neoplasia (CIN) 2 associated with individual genotypes and related multiple HPV infections are calculated. RESULTS: A total of 1677 women aged between 21 and 77 were finally included in the present study. The cytology group included 1202 women and the histopathological group included 475 women with at least one HR-HPV infection of any genotype. We only observed a higher risk of low grade cytological abnormalities in women with multiple infections than those in corresponding single infections (for all population with an OR of 1.85[1.39-2.46]; p < 0.05). However, this phenomenon was not observed in histopathology abnormalities (CIN1). The risk of developing of ≥ HSIL/CIN2 in women who were infected with multiple HR-HPV also showed a similar profile to those with a single HR-HPV genotype. CONCLUSION: Multiple HR-HPV infections is only associated with a higher associated risk of low grade cytological abnormalities. There is no evidence of clinical benefit to identify the possible presence of multiple HR-HPV infection frequently in a short period of time for women with HR-HPV-DNA positive.


Assuntos
Carcinoma in Situ , Carcinoma de Células Escamosas , Infecções por Papillomavirus , Humanos , Feminino , Adulto Jovem , Adulto , Pessoa de Meia-Idade , Idoso , Colo do Útero , Infecções por Papillomavirus/complicações , DNA
10.
Sci Total Environ ; 923: 171315, 2024 May 01.
Artigo em Inglês | MEDLINE | ID: mdl-38431177

RESUMO

Development of microalgal-bacterial granular sludge (MBGS) from saline-adapted microalgae is a promising approach for efficient mariculture wastewater treatment, whereas the elusive mechanisms governing granulation have impeded its widespread adoption. In this study, spherical and regular MBGS were successfully developed from mixed culture of pure Spirulina platensis and Chlorella sp. GY-H4 at 10 mg/L Fe2+ concentration. The addition of Fe2+ was proven to induce the formation of Fe-precipitates which served as nucleation sites for microbial attachment and granulation initiation. Additionally, Fe2+ increased the prevalence of exopolysaccharide-producing cyanobacteria, i.e. Synechocystis and Leptolyngbya, facilitating microbial cell adhesion. Furthermore, it stimulated the secretion of extracellular proteins (particularly tryptophan and aromatic proteins), which acted as structural backbone for the development of spherical granule form microalgal flocs. Lastly, it fostered the accumulation of exogenous heterotrophic functional genera, resulting in the efficient removal of DOC (98 %), PO43--P (98 %) and NH4+-N (87 %). Nevertheless, inadequate Fe2+ hindered microalgal floc transformation into granules, excessive Fe2+ expanded the anaerobic zone within the granules, almost halved protein content in the TB-EPS, and inhibited the functional genes expression, ultimately leading to an irregular granular morphology and diminished nutrient removal. This research provides valuable insights into the mechanisms by which Fe2+ promotes the granulation of salt-tolerant microalgae, offering guidance for the establishment and stable operation of MBGS systems in mariculture wastewater treatment.


Assuntos
Chlorella , Microalgas , Purificação da Água , Águas Residuárias , Microalgas/metabolismo , Esgotos/química , Proteínas/metabolismo , Bactérias , Purificação da Água/métodos , Ferro/metabolismo , Biomassa , Nitrogênio/metabolismo
11.
Small ; : e2311812, 2024 Mar 07.
Artigo em Inglês | MEDLINE | ID: mdl-38453675

RESUMO

Local high concentration electrolytes (LHCEs) have been proved to be one of the most promising systems to stabilize both high voltage cathodes and Li metal anode for next-generation batteries. However, the solvation structures and interactions among different species in LHCEs are still convoluted, which bottlenecks the further breakthrough on electrolyte development. Here, it is demonstrated that the hydrogen bonding interaction between diluent and solvent is crucial for the construction of LHCEs and corresponding interphase chemistries. The 2,2,2-trifluoroethyl trifluoromethane sulfonate (TFSF) is selected as diluent with the solvent dimethoxy-ethane (DME) to prepare a non-flammable LHCE for high voltage LMBs. This is first find that the hydrogen bonding interaction between TFSF and DME solvent tailors the electrolyte solvation structures by weakening the coordination of DME molecules to Li+ cations and allows more participation of anions in the first solvation shell, leading to the formation of aggregates (AGGs) clusters which are conducive to generating inorganic solid/cathodic electrolyte interphases (SEI/CEIs). The proposed TFSF based LHCE enables the Li||NCM811 (LiNi0.8 Mn0.1 O2 ) batteries to realize >80% capacity retention with a high average Coulombic efficiency of 99.8% for 230 cycles under aggressive conditions (NCM811 cathode: 3.4 mAh cm-2 , cut-off voltage: 4.4 V, and 20 µm Li foil).

12.
Interdiscip Sci ; 2024 Mar 08.
Artigo em Inglês | MEDLINE | ID: mdl-38457108

RESUMO

As one of the most important post-translational modifications (PTMs), protein phosphorylation plays a key role in a variety of biological processes. Many studies have shown that protein phosphorylation is associated with various human diseases. Therefore, identifying protein phosphorylation site-disease associations can help to elucidate the pathogenesis of disease and discover new drug targets. Networks of sequence similarity and Gaussian interaction profile kernel similarity were constructed for phosphorylation sites, as well as networks of disease semantic similarity, disease symptom similarity and Gaussian interaction profile kernel similarity were constructed for diseases. To effectively combine different phosphorylation sites and disease similarity information, random walk with restart algorithm was used to obtain the topology information of the network. Then, the diffusion component analysis method was utilized to obtain the comprehensive phosphorylation site similarity and disease similarity. Meanwhile, the reliable negative samples were screened based on the Euclidean distance method. Finally, a convolutional neural network (CNN) model was constructed to identify potential associations between phosphorylation sites and diseases. Based on tenfold cross-validation, the evaluation indicators were obtained including accuracy of 93.48%, specificity of 96.82%, sensitivity of 90.15%, precision of 96.62%, Matthew's correlation coefficient of 0.8719, area under the receiver operating characteristic curve of 0.9786 and area under the precision-recall curve of 0.9836. Additionally, most of the top 20 predicted disease-related phosphorylation sites (19/20 for Alzheimer's disease; 20/16 for neuroblastoma) were verified by literatures and databases. These results show that the proposed method has an outstanding prediction performance and a high practical value.

13.
Int J Mol Sci ; 25(5)2024 Mar 04.
Artigo em Inglês | MEDLINE | ID: mdl-38474217

RESUMO

Nitrogen is a crucial element that impacts rice yields, and effective tillering is a significant agronomic characteristic that can influence rice yields. The way that reduced nitrogen affects effective tillering is a complex quantitative trait that is controlled by multiple genes, and its genetic basis requires further exploration. In this study, 469 germplasm varieties were used for a genome-wide association analysis aiming to detect quantitative trait loci (QTL) associated with effective tillering at low (60 kg/hm2) and high (180 kg/hm2) nitrogen levels. QTLs detected over multiple years or under different treatments were scrutinized in this study, and candidate genes were identified through haplotype analysis and spatio-temporal expression patterns. A total of seven genes (NAL1, OsCKX9, Os01g0690800, Os02g0550300, Os02g0550700, Os04g0615700, and Os04g06163000) were pinpointed in these QTL regions, and were considered the most likely candidate genes. These results provide favorable information for the use of auxiliary marker selection in controlling effective tillering in rice for improved yields.


Assuntos
Estudo de Associação Genômica Ampla , Oryza , Mapeamento Cromossômico , Oryza/genética , Nitrogênio , Locos de Características Quantitativas
14.
J Atheroscler Thromb ; 2024 Mar 09.
Artigo em Inglês | MEDLINE | ID: mdl-38462482

RESUMO

Familial chylomicronemia syndrome (FCS) and multifactorial chylomicronemia (MCM), characterized by highly variable triglyceride levels with acute episodes of severe hypertriglyceridemia (HTG), are caused by rare variants in genes associated with the catabolism of circulating lipoprotein triglycerides, mainly including LPL, APOC2, APOA5, GPIHBP1, and LMF1. Among them, the LMF1 gene only accounts for 1%. This study described a Chinese patient with severe HTG carrying compound heterozygous variants of a rare nonsense variant p.W168X in exon 3 and a missense variant p.R416Q in exon 9 in the LMF1 gene. These heterozygous variants account for his family's decreased lipase activity and mass, which caused the FCS phenotype.

15.
Clin Exp Hypertens ; 46(1): 2304023, 2024 Dec 31.
Artigo em Inglês | MEDLINE | ID: mdl-38346228

RESUMO

OBJECTIVES: The objective was to utilize a smartwatch sphygmomanometer to predict new-onset hypertension within a short-term follow-up among individuals with high-normal blood pressure (HNBP). METHODS: This study consisted of 3180 participants in the training set and 1000 participants in the validation set. Participants underwent both ambulatory blood pressure monitoring (ABPM) and home blood pressure monitoring (HBPM) using a smartwatch sphygmomanometer. Multivariable Cox regressions were used to analyze cumulative events. A nomogram was constructed to predict new-onset hypertension. Discrimination and calibration were assessed using the C-index and calibration curve, respectively. RESULTS: Among the 3180 individuals with HNBP in the training set, 693 (21.8%) developed new-onset hypertension within a 6-month period. The nomogram for predicting new-onset hypertension had a C-index of 0.854 (95% CI, 0.843-0.867). The calibration curve demonstrated good agreement between the nomogram's predicted probabilities and actual observations for short-term new-onset hypertension. In the validate dataset, during the 6-month follow-up, the nomogram had a good C-index of 0.917 (95% CI, 0.904-0.930) and a good calibration curve. As the score increased, the risk of new-onset hypertension significantly increased, with an HR of 8.415 (95% CI: 5.153-13.744, p = .000) for the middle-score vs. low-score groups and 86.824 (95% CI: 55.071-136.885, p = .000) for the high-score vs. low-score group. CONCLUSIONS: This study provides evidence for the use of smartwatch sphygmomanometer to monitor blood pressure in individuals at high risk of developing new-onset hypertension in the near future. TRIAL REGISTRATION: ChiCTR2200057354.


Assuntos
Monitorização Ambulatorial da Pressão Arterial , Hipertensão , Humanos , Pressão Sanguínea/fisiologia , Estudos de Coortes , Hipertensão/diagnóstico , Hipertensão/etiologia , Esfigmomanômetros , Nomogramas
16.
BMC Surg ; 24(1): 64, 2024 Feb 17.
Artigo em Inglês | MEDLINE | ID: mdl-38368360

RESUMO

BACKGROUND: This study aims to assess the recovery patterns and factors influencing outcomes in patients with common peroneal nerve (CPN) injury. METHODS: This retrospective study included 45 patients with CPN injuries treated between 2009 and 2019 in Jing'an District Central Hospital. The surgical interventions were categorized into three groups: neurolysis (group A; n = 34 patients), nerve repair (group B; n = 5 patients) and tendon transfer (group C; n = 6 patients). Preoperative and postoperative sensorimotor functions were evaluated using the British Medical Research Council grading system. The outcome of measures included the numeric rating scale, walking ability, numbness and satisfaction. Receiver operating characteristic (ROC) curve analysis was utilized to determine the optimal time interval between injury and surgery for predicting postoperative foot dorsiflexion function, toe dorsiflexion function, and sensory function. RESULTS: Surgical interventions led to improvements in foot dorsiflexion strength in all patient groups, enabling most to regain independent walking ability. Group A (underwent neurolysis) had significant sensory function restoration (P < 0.001), and three patients in Group B (underwent nerve repair) had sensory improvements. ROC analysis revealed that the optimal time interval for achieving M3 foot dorsiflexion recovery was 9.5 months, with an area under the curve (AUC) of 0.871 (95% CI = 0.661-1.000, P = 0.040). For M4 foot dorsiflexion recovery, the optimal cut-off was 5.5 months, with an AUC of 0.785 (95% CI = 0.575-0.995, P = 0.020). When using M3 toe dorsiflexion recovery or S4 sensory function recovery as the gold standard, the optimal cut-off remained at 5.5 months, with AUCs of 0.768 (95% CI = 0.582-0.953, P = 0.025) and 0.853 (95% CI = 0.693-1.000, P = 0.001), respectively. CONCLUSIONS: Our study highlights the importance of early surgical intervention in CPN injury recovery, with optimal outcomes achieved when surgery is performed within 5.5 to 9.5 months post-injury. These findings provide guidance for clinicians in tailoring treatment plans to the specific characteristics and requirements of CPN injury patients.


Assuntos
Nervo Fibular , Neuropatias Fibulares , Humanos , Estudos Retrospectivos , Nervo Fibular/cirurgia , Nervo Fibular/lesões , Neuropatias Fibulares/cirurgia , Procedimentos Neurocirúrgicos
17.
Artigo em Inglês | MEDLINE | ID: mdl-38422367

RESUMO

OBJECTIVE: Most existing fine-tuned biomedical large language models (LLMs) focus on enhancing performance in monolingual biomedical question answering and conversation tasks. To investigate the effectiveness of the fine-tuned LLMs on diverse biomedical natural language processing (NLP) tasks in different languages, we present Taiyi, a bilingual fine-tuned LLM for diverse biomedical NLP tasks. MATERIALS AND METHODS: We first curated a comprehensive collection of 140 existing biomedical text mining datasets (102 English and 38 Chinese datasets) across over 10 task types. Subsequently, these corpora were converted to the instruction data used to fine-tune the general LLM. During the supervised fine-tuning phase, a 2-stage strategy is proposed to optimize the model performance across various tasks. RESULTS: Experimental results on 13 test sets, which include named entity recognition, relation extraction, text classification, and question answering tasks, demonstrate that Taiyi achieves superior performance compared to general LLMs. The case study involving additional biomedical NLP tasks further shows Taiyi's considerable potential for bilingual biomedical multitasking. CONCLUSION: Leveraging rich high-quality biomedical corpora and developing effective fine-tuning strategies can significantly improve the performance of LLMs within the biomedical domain. Taiyi shows the bilingual multitasking capability through supervised fine-tuning. However, those tasks such as information extraction that are not generation tasks in nature remain challenging for LLM-based generative approaches, and they still underperform the conventional discriminative approaches using smaller language models.

18.
Aging Ment Health ; : 1-8, 2024 Feb 21.
Artigo em Inglês | MEDLINE | ID: mdl-38381699

RESUMO

OBJECTIVES: Service accessibility plays a pivotal role in older adults' mental health. However, accessibility measures used in previous studies are either objective or perceived. This study aimed to integrate both objective and perceived measures of service accessibility to explore the relationship between environmental cognition on service accessibility and mental health in older adults and the pathways. METHODS: We used both questionnaire data collected from 2,317 older adults in Hong Kong and geographical data to explore the direct and indirect effect of environmental cognition (i.e. positive, negative, and matching evaluation) relating to service accessibility on mental health and two pathways (i.e. physical activity and sense of belonging) based on a structural equation model. RESULTS: Physical activity mediated the positive relationship between non-negative perceptions toward access to convenience stores, leisure facilities, clinics, community centers, places of worship and mental health. Sense of community can significantly mediate the positive relationships between non-negative perceptions toward all 10 types of services and mental health. CONCLUSION: This study provides an empirical contribution to environmental cognition theory and person-environment fit theory; its findings have implications for urban planning policy.


The findings from this study provide significant evidence that environmental cognition distortion, especially negative perception, can be significantly associated with lower mental health through physical activity and a sense of community. This suggests that policies focused on changing environmental cognitions could be a promising public health strategy. Environmental cognition theory suggests that improving awareness of setting could help improve the precision of cognitive mapping of environmental reality. This can be very important where it is difficult to change the objective environment due to the deep-rooted and long-standing urban structure.

19.
Small ; : e2311153, 2024 Feb 02.
Artigo em Inglês | MEDLINE | ID: mdl-38308409

RESUMO

Here, a high peak ZT of ≈2.0 is reported in solution-processed polycrystalline Ge and Cd codoped SnSe. Microstructural characterization reveals that CdSe quantum dots are successfully introduced by solution process method. Ultraviolet photoelectron spectroscopy evinces that CdSe quantum dots enhance the density of states in the electronic structure of SnSe, which leads to a large Seebeck coefficient. It is found that Ge and Cd codoping simultaneously optimizes carrier concentration and improves electrical conductivity. The enhanced Seebeck coefficient and optimization of carrier concentration lead to marked increase in power factor. CdSe quantum dots combined with strong lattice strain give rise to strong phonon scattering, leading to an ultralow lattice thermal conductivity. Consequently, high thermoelectric performance is realized in solution-processed polycrystalline SnSe by designing quantum dot structures and introducing lattice strain. This work provides a new route for designing prospective thermoelectric materials by microstructural manipulation in solution chemistry.

20.
Biol Direct ; 19(1): 10, 2024 01 24.
Artigo em Inglês | MEDLINE | ID: mdl-38267979

RESUMO

BACKGROUND: Neuropathic pain is chronic pain and has few effective control strategies. Studies have demonstrated that microRNAs have functions in neuropathic pain. However, no study has been conducted to demonstrate the role and mechanism of microRNA (miR)-31-5p in neuropathic pain. Accordingly, this study sought to determine the pathological role of miR-31-5p in chronic constriction injury (CCI) -induced neuropathic pain mouse models. METHODS: We used CCI surgery to establish mouse neuropathic pain model. Behavioral tests were performed to evaluate pain sensitivity of mice. Expressions of miR-31-5p and inflammatory cytokines in dorsal root ganglion (DRG) were examined by polymerase chain reaction. Animals or cells were received with/without miR-31-5p mimic or inhibitor to investigate its role in neuropathic pain. The mechanism of miR-31-5p was assayed using western blotting, immunofluorescence staining and dual-luciferase reporter assay. RESULTS: We found that CCI led to a significant decrease in miR-31-5p levels. Knockout of miR-31-5p and administration of miPEP31 exacerbated pain in C57BL/6 mice. Meanwhile, miR-31-5p overexpression increased the paw withdrawal threshold and latency. TRAF6 is one of the target gene of miR-31-5p, which can trigger a complex inflammatory response. TRAF6 was associated with pain and that reducing the DRG expression of TRAF6 could alleviate pain. In addition, miR-31-5p overexpression inhibited the TRAF6 expression and reduced the neuroinflammatory response. CONCLUSIONS: All the results reveal that miR-31-5p could potentially alleviate pain in CCI mouse models by inhibiting the TRAF6 mediated neuroinflammatory response. MiR-31-5p upregulation is highlighted here as new target for CCI treatment.


Assuntos
MicroRNAs , Neuralgia , Animais , Camundongos , Inflamação/genética , Camundongos Endogâmicos C57BL , Camundongos Knockout , MicroRNAs/genética , Neuralgia/genética , Fator 6 Associado a Receptor de TNF/genética
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...